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       We consider the effect of the TO soft mode interaction with local, LM, mode at the ferroelectric phase transition, PT, in KTa1-

xNbx O3 (x=0.15, 0.17) in the mean-field approximation. TO-LM interaction leads to the splitting PT, formation coupled TO-LM 

modes and additional static Qs, Qφs TO and LM displacements, respectively, at the temperature interval TL<Tc<TR. The resonance 

damping of the TAW was observed in KTN15 [3]. We explained the presence of resonance by the dynamics of the off-center Nb+5 

ions but found simultaneously that the corresponding oscillator force has a peak around Tc. The appearance of Qφs static 

displacements allows qualitative understanding of the reason for this peak existence. Soft-mode TO-LM interaction leads to the 

mode repulsing. The observed value of coupled TO-LM mode frequency is decreasing near Tc, but the gap ~1.4 THz is survived.  

The dielectric susceptibility is often described by the empirical Cole-Cole relaxation expression 𝜒𝐶𝐶 (α), 0<α<1. Expression 𝜒𝐶𝐶   

does not contain any resonance. We extended [3] Cole-Cole expression for the case α>1 and found that in this case susceptibility 

contains resonance in the complex   ω – plane. The measuring [3] value of αexp≈1.6, but any physical explanation was absent. Here 

we applied for the analysis susceptibility general requirement causality, single - value, and energy dissipation [10] and found that 

αexp is placed inside window of possibilities, 1<α< 2, and corresponding to the high contrast resonance non-overlapping with other 

resonances. This dynamical complex resonance could not be excited by the low-frequency thermal noise and creates a sharp, strong 

hole at the correlation functions spectrum at the frequency ω=0. 

Introduction 

       During the last several decades, outstanding progress has been achieved in the experimental and theoretical studies of static 

critical phenomenon (see for example [1, 2]). However, the progress, especially in theory, in the research of the dynamical features 

of the phase transitions was not so exciting despite their excellent importance for fundamental and applied science. Several years 

ago, Toulouse et al [3, 4, 5] fulfilled detailed high-resolution neutron scattering studies of the TA and TO dynamics in the single 

crystals KTa1-xNbx O3 (x=0.15, 0.17) which could be consider as a “weak” relaxor in comparison with widely research PMN 

(PbMg1/3Nb2/3O3) and PZN (PbZn1/3Nb2/3O3) ones. 

        In KTN, the Ta+5 ion is replaced by the isovalent Nb+5 ion with almost the same ionic radius, while Nb+5 replaces the divalent 

Mg+2 ion in PMN and the divalent Zn2+ ion in PZN. Hence, chemical disordering leads to the existence of strong static electric 

random fields in PMN and PZN but not in KTN. Therefore, KTN can probably be considered as a useful model system for the 

study of relaxor ferroelectrics with homovalent cations (K1-xLix) TaO3 (KLT), Ba(Zr1xTix)O3 (BZT), and Ba(Sn1-xTix)O3 (BST).  

Stock et al [6] shown complicated “fluctuation defects” dynamics in KLT crystal. 

        The essential feature of all three systems is the presence of off-center ions and the two simultaneous types of dynamics they 

display, one the local motion within the unit cell and the other the correlated/collective motion of off-center ions in different unit 

cells. In KTN, the Nb+5 ions are displaced from their high symmetry site by 0.145 Ǻ in eight equivalent <111> directions [7, 8]. 
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These off-center ions create randomly distributed electric dipoles that can reorient under the action of an external electric field, 

giving rise to the characteristic relaxor behavior of the dielectric susceptibility. It was shown [3, 4] that the observed TA damping 

can be qualitatively explained by a resonant interaction between the TA phonon and a dispersion less (probably localized) mode, 

LM, with frequency ωR and damping ΓR, ΓR < ωR, ωR ~0.7 THz.  

       Here we continue our calculations [3] in the part concerning the effect of TO-LM interaction at the phase transition. We 

describe model harmonic resonance (2.), its solution (3.), and Cole-Cole relaxation model [9] extended over to the resonance 

processes (4.). Experimental results are discussed “in parallel” with experimental data.  

Model Harmonic Resonance 

       We analyze the effect of the TOW interaction with LM at the phase transition. This interaction is much stronger than TAW-

LM one. Calculations are done in the mean-field approximation, MF, that is we consider the effects of frequency dispersion but 

neglect, for the simplicity, the effects of space dispersion. For the case of cubic crystal lattice free energy (effective potential 

energy) is written in the well-known form [1]            

               𝐹𝐿 =
1

2
𝑎𝜏 ∑ 𝑄𝑘

2𝑘=3
𝑘=1 + 𝑢(∑ 𝑄𝑘

2𝑘=3
𝑘=1 )2 + 𝑣 ∑ 𝑄𝑘

4𝑘=3
𝑘=1 , 𝜏 = 𝑇/𝑇𝑐 − 1, 𝑎 > 0 (1)   

                      Here Qk is TO displacement in the k-direction, a, u, and v    are numerical parameters, T and Tc – ordinary and critical 

temperatures.  We limit here by the case of u>0, v<0, corresponding ground state type (100), (010), or (001). For simplicity we 

also limit ourselves by the case    v=-2/3*u when cubic system is symmetric for the respect of TOW and LOW. For an example 

TO and LO waves have the same frequency in such case in the crystal stretched along (001) direction. Local modes are described 

in the harmonic approximation. Corresponding Hamiltonian and part, corresponding TO-LM interaction, are written in the simplest 

form.    

                      𝐻𝐿𝑀 = 𝜌/2𝜔0𝑅2 ∑ 𝑄𝜑𝑘
2,𝑘=3

𝑘=1     𝑉𝑇𝑂−𝐿𝑀 = √𝜌𝑔0𝜔0𝑅2 ∑ 𝑄𝑘𝑄𝜑𝑘   𝑘=3
𝑘=1  (2) 

                     ω0R - LM frequency, g0 – dimensionless constant of TO-LM interaction, 𝜌 −renormalization constant. Therefore, we describe 

LM in the harmonic representation. It seems strange at the first sight, because  𝜔0𝑅~35 𝐾 𝑎𝑛𝑑 𝑇𝑐~137 𝐾. However, we consider 

dynamics of the phase transition in the MF, very long waves approximation. During the phase transition average LM levels 

population is changed very small and we could (at least at the first approximation), apply harmonic LM description, maybe with 

renormalization,  

              𝜌 = 𝑡ℎ(
𝜔0𝑅

2𝑇
).   Probably this renormalization could be absorbed in the redefined new variables and constants, and we will omit 

factor 𝜌 in the following. Such an approach is not applicable for the case of, say, NMR experiments, when long wave sample 

excitation is, as a rule, very strong. Therefore, we analyze anharmonic lattice interacting with harmonic LM. 

                    Lattice free energy component contains instability at τ<0.The essential part of model is following. We “solve” model with free 

energy FL (1) (we title this hypothetical ferroelectric crystal as pro-crystal) and ONLY excitations in this solved pro-crystal model 

are interacting with LM (corresponding free energy contribution FLm). 

             𝐹𝐿𝑚 = 𝑎𝜏(𝜃(𝜏) − 2𝜃(−𝜏)) ∑ 𝑄𝑘
2 + 𝑢𝑘=3

𝑘=1 (∑ 𝑄𝑘
2)𝑘=3

𝑘=1
2

− 2/3𝑢(∑ 𝑄𝑘
4) + 𝐻𝐿𝑀 +𝑘=3

𝑘=1 𝑉𝑇𝑂−𝐿𝑀, 𝑄𝑘 = 𝑄𝑠𝑘 + 𝑄𝑑𝑘, 𝑄𝜑𝑘 = 𝑄𝜑𝑠𝑘 +

𝑄𝜑𝑑𝑘  , 𝜃(𝑥 > 0) = 1, 𝜃(𝑥 < 0) = 0  (3) 

𝑄𝑠𝑘 , 𝑄𝜑𝑠𝑘  𝑎𝑛𝑑 𝑄𝑑𝑘, 𝑄𝜑𝑑𝑘  - static and dynamic displacements components. 

Values of the static displacements 𝑄𝑠𝑛 , 𝑄𝜑𝑠𝑛, corresponding extremum FLm, are found from the eq-ns (4) 

𝑄𝑠𝑛 (2𝑎𝜏(𝜃(  𝜏) − 2𝜃( −𝜏)) + 4𝑢 ∑ 𝑄𝑠𝑘
2

3

𝑘=1

−
8𝑢

3
𝑄𝑠𝑛

2 − 𝑔02𝜔0𝑅2) = 0,   𝑄𝜑𝑠𝑛 = −𝑔0 ∗ 𝑄𝑠𝑛 , 𝑛 = 1,2,3  (4) 

Frequency of the small vibrations near equilibrium values are defined from the eq-ns (5) 
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𝑒𝑞𝑄𝑑1 = (−𝜔2 + 2𝑎𝜏(𝜃(  𝜏) − 2𝜃( −𝜏))𝑄𝑑1 + 𝑄𝑑14𝑢 ∑ 𝑄𝑠𝑘
2 + 8𝑢𝑄𝑠1

3
𝑘=1 (𝑄𝑠2𝑄𝑑2 + 𝑄𝑠3𝑄𝑑3) +

𝑔02𝜔0𝑅4

𝜔2−𝜔0𝑅2 ∗ 𝑄𝑑1 =

0, 𝑄𝜑𝑑1 = 𝑔0
𝜔0𝑅2

𝜔2−𝜔0𝑅2 𝑄𝑑1, . . ;   (5) 

Selection solution eq-ns (4) is done applying requirement stability, that is positive value of the ALL eigenvalues eq-ns (5), 𝜔2 >

0. 

It is convenient to introduce left and right critical points selected different solution (4, 5) in each from four temperature interval. 

𝜏𝐿 = −
𝑔02𝜔0𝑅2

4𝑎
< 0, 𝜏𝑅 =

𝑔02𝜔0𝑅2

2𝑎
> 0, 𝑇𝐿= 𝑇𝑐(1 + 𝜏𝐿), 𝑇𝑅= 𝑇𝑐(1 + 𝜏𝑅), 𝑇𝐿 <  𝑇𝑐 < 𝑇𝑅  (6) 

a) T<TL<Tc. Pro-crystal is ferroelectric (100), additional static displacements are absent, 𝑄𝑠𝑛 = 𝑄𝜑𝑠𝑛 = 0, dispersion eq-n 𝑒𝑞𝑎 ≡

−𝜔2 − 4𝑎𝜏+
𝑔02𝜔0𝑅4

𝜔2−𝜔0𝑅2 = 0  (7𝑎)       

b) TL<T<Tc. Pro-crystal is ferroelectric (100), additional static displacements have symmetry (001). 𝑄𝑠1 = 𝑄𝜑𝑠1 = 𝑄𝑠2 = 𝑄𝜑𝑠2 =

0, 𝑄𝑠3
2 =

3(𝑔02𝜔0𝑅2+4𝑎𝜏)

4𝑢
, 𝑒𝑞𝑏 = −𝜔2 − 8𝑎𝜏+3𝑔02𝜔0𝑅2 +

𝑔02𝜔0𝑅4

𝜔2−𝜔0𝑅2 = 0  (7𝑏)       

c) TR>T>Tc. Pro-crystal is paraelectric, additional static displacements have symmetry (001), or similar. 𝑄𝑠1 = 𝑄𝜑𝑠1 = 𝑄𝑠2 =

𝑄𝜑𝑠2 = 0, 𝑄𝑠3
2 = 3(𝑔02𝜔0𝑅2 − 2𝑎𝜏)/4𝑢, 𝑒𝑞𝑐 = −𝜔2 − 4𝑎𝜏+3𝑔02𝜔0𝑅2 +

𝑔02𝜔0𝑅4

𝜔2−𝜔0𝑅2 = 0  (7𝑐) 

d) T>TR. Pro-crystal is paraelectric, additional static displacements are absent, 𝑄𝑠𝑛 = 𝑄𝜑𝑠𝑛 = 0, dispersion eq-n    𝑒𝑞𝑑=−𝜔2 +

2𝑎𝜏+
𝑔02𝜔0𝑅4

𝜔2−𝜔0𝑅2 =0 (7d)  

 

Retarded <<Qd|Qd>> and <<Qφd|Qφd>> Green functions are calculated by means of eq-ns (8) with added ordinary TO, ГQ, and 

LM, Гφ, damping parameters. For an example, at the region T<TL<Tc 

≪ 𝑄𝑑|𝑄𝑑 ≫𝑎= 1/2𝜋
𝜃(𝜏𝐿−𝜏)

(−𝜔2−𝐼𝜔Г𝑄−4𝑎𝜏+
𝑔02𝜔0𝑅4

𝜔2+𝐼𝜔Г𝜑−𝜔0𝑅2)
, ≪ 𝑄𝜑𝑑|𝑄𝜑𝑑 ≫𝑎= −1/2𝜋

𝜃(𝜏𝐿−𝜏)

(𝜔2+𝐼𝜔Г𝜑−𝜔0𝑅2+
𝑔02𝜔0𝑅4

−𝜔2−𝐼𝜔Г𝑄−4𝑎𝜏
)
  (8) ... 

Correlation functions are calculated by means of the standard method. 

  𝑆𝑄𝑑𝑄𝑑 =
1

(1−exp(−
𝜔

𝑇
))

𝐼𝑚(≪ 𝑄𝑑|𝑄𝑑 ≫), 𝑆𝑄𝜑𝑑𝑄𝜑𝑑 =
1

(1−exp(−
𝜔

𝑇
))

𝐼𝑚(≪ 𝑄𝜑𝑑|𝑄𝜑𝑑 ≫)  (9) 

Calculation Results and Experimental Data Discussion 

Our model is very simple and schematic. Therefore, we used more-or- less suitable numerical parameters without serious fitting. 

 

Figure 01: Values of static additional TO, Qs2/u, and LM, Qφs2/u, displacements vs temperature. Tc= 137, ω0R=0.7, a=8.22, 

g0=2.05, ГQ=0.2, Гφ=0.4 (K, THz). These displacements lead to the contribution to the elastic diffuse scattering intensity 

proportional Qs2 ,  Qφs2 and peaked around T=140 K .The observed [3] integral intensity of the elastic neutron diffuse scattering 
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at KTN15  goes through a clear maximum around 130 K and was considered as evidence of PNR appearance. However, the origin 

of these PNRs was unknown. 

       TA dynamics was studied in KTN15, and resonance TA damping was certainly observed [3]. However, value of the matrix 

element of the resonance transition (oscillator force) has maximum at T~140 K. We supposed [3] mechanism leading to this peak 

existence. Off-center tunneling Nb+5 ion creates energy level structure. Direct TA-LM transition (~0.7 THz) is forbidden. PNR 

polarization leads to the level mixing and “opening” this transition. Static LM displacement Qφs leads to the level mixing, opening 

resonance transition, and could create discussed peak without any additional prepositions about PNR.  

 

Figure 02: Coupled TO-LM mode (eq-ns (7), black, red); no-interacting modes (g0 =0, blue, green). Phase transition splitting and 

mode repulsing evidence. 

 

Figure 03: KTN 17. Soft-mode (0,2,0) spectrum temperature dependence [3],[4],[5]. TO (020) excitations with frequency ~0.5 

THz was also observed (not shown here). 

Model Complex Dynamical Resonance  

  Relaxation models (Debye, Cole-Cole, Havriliak – Negami [9]) are widely applied for the analysis of electric susceptibility 

complex objects. For example, Cole-Cole susceptibility is written as  

𝜒𝐶𝐶
1 = (1 + (exp (−

𝐼𝜋

2
)𝜔 𝜏𝐶𝐶)

 𝛼𝐶𝐶 
)−1  , 0 < 𝛼𝐶𝐶 < 1 
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Frequency scale is defined by the value of the relaxation time τcc. It is supposed for convenience τcc =1 in the following. 

  We extended the Cole-Cole model for the case α>1 and applied this approach to the analysis resonance TAW damping in KTN15 

[3]. Here we continue studies of the extended Cole-Cole model in the complex 𝜔 − plane. 

𝜒𝑒𝐶𝐶
1 ≡ (1 + (exp (−

𝐼𝜋

2
)𝜔 )

 𝛼 
)−1  , 𝛼 > 1 ,  𝜔 = |𝜔|exp (𝐼𝛹)  (10) 

Susceptibility 𝜒𝑒𝐶𝐶 has poles at  

𝜔𝑝 = exp (𝐼𝛹𝑝), 𝛹𝑝=
𝜋(2𝑘+1)

𝛼
+

𝜋

2
, k=0,∓1, ∓2, ∓..  (11) 

Function 𝜒𝑒𝐶𝐶  should be analytical in the upper semi plane, Im(ω) ≥ 0 due to the causality requirements (Landau, Lifschitz, [10]) 

and single-valued. Therefore, we make cut in ω-plane from 0 to -I∞ and receive,  

0>𝛹𝑝 ≥ −
𝜋

2
  or  

3𝜋

2
> 𝛹𝑝 > 𝜋  (12) 

Expressions (11) and (12) lead to the limits at the value of 𝛼 compatible with pole existence, 

𝛼𝑝 = 𝛼 ∗ 𝜃(𝛼 − 2𝑛 − 1)𝜃(4𝑛 + 2 − 𝛼) ,  𝑛 = 0, +1, +2, + ⋯, 

𝜃(𝑥 > 0) = 1,  𝜃(𝑥 < 0) = 0                                                (13) 

We title these poles as complex dynamical resonances, CDR. Poles are symmetrically placed,  

𝛹𝑝𝐿(𝑅)(𝛼, 𝑛) =
𝜋

2
±

𝜋(2𝑛 + 1)𝜃(𝛼 − 2𝑛 − 1)𝜃(4𝑛 + 2 − 𝛼)

𝛼
(14) 

Damping ГeCC and resonance frequency ωeCC are defined by the expressions: 

Г𝑒𝐶𝐶 = −𝜃(𝛼 − 2𝑛 − 1)𝜃(4𝑛 + 2 − 𝛼) ∗ sin (𝛹𝑝𝑅(𝛼, 𝑛)), 

| ωeCC |= 𝜃(𝛼 − 2𝑛 − 1)𝜃(4𝑛 + 2 − 𝛼) ∗ |cos (𝛹𝑝𝑅(𝛼, 𝑛)) |  (15) 

It is known that the imaginary part of the susceptibility defines energy dissipation. Therefore, exists (Landau, Lifschitz, [10]) 

additional requirement that Im(χ)>0 at ω>0 and Im(χ)<0 at ω<0. This requirement could be fulfilled by application expression 

χeCCf   instead of χeCC, 

𝜒𝑒𝐶𝐶𝑓 = 𝑓𝑚𝑜𝑑 ∗ 𝜒𝑒𝐶𝐶  , 

fmod = (−1)𝑓 ,  𝑓 = 1 + 𝜃(𝛼 − 1)𝜃(2 − 𝛼) + ∑ 𝜃(𝛼 − 4𝑚)𝜃(4𝑚 + 2 − 𝛼)𝑚=∞
𝑚=1 , fmod (𝛼=1.6) =1 (16) 

 

Figure 04: Available poles position αp  𝛼s function of α: black, n=0; blue, n=1; green, n=2; red, n=3.   
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Figure 05: Values of the resonance damping ГeCC, (point line) and frequency ωeCC (point) as function of α for n=0,1,2,3. Damping 

is strong at the beginning of corresponding region, α≈1,3,5,7 and small at α≈2,6,10,14. 

We define resonance contrast, RC, as value of  

𝑅𝐶 ≡
|𝑟𝑒𝑠𝑖𝑑(𝜒𝑒𝐶𝐶)|

Г𝑒𝐶𝐶
=

1

𝛼𝑝Г𝑒𝐶𝐶
                     (17) 

 

Figure 06: Resonance contrast as function of α for n=0,1,2,3. 

 

 

Figure 07: KTN15. The observed [3] value of the parameter α≈1.6±0.05 appears in the “allowed” interval 1< α <2 and corresponds 

to the high contrast resonance non-overlapping with other resonances.  
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Correlation functions corresponding CDR are calculated like the case of the harmonic resonance model but with replacement, 

+
𝑔02𝜔0𝑅4

𝜔2+𝐼𝜔Г𝜑−𝜔0𝑅2       by (−1) ∗ 𝑔02𝜔0𝑅2χeCCf.  

 

Figure 08: Correlation function SQdQd for the case of the harmonic resonance. T= 100, 125, 137.2 155,170, 190 (black, brown, 

blue, green, magenta, red). TL=128.37, Tc=137, TR=154.25. Vertical green scale x0.01.  

Correlation function SQdQdeCCf for the case of complex dynamical resonance has some peculiarity. 

 

 

Figure 09:  Correlation function (central part) SQdQdeCCf for the case of complex dynamical resonance, α=1.6. T= 100, 125, 

137.2, 155, 170, 190. SQdQdeCCf has a sharp, strong central hole at ω=0 in contrast with SQdQd. It appears because Im(χeCC) 

~|ω|^α and therefore complex dynamical resonance isn’t excited by the low-frequency thermal noise. 

Relaxation function  

𝐹𝐶𝐷𝑅(𝑡, 𝛼) ≡ ∫ 𝜒𝑒𝐶𝐶𝑓 (𝜔) exp(−𝐼𝜔𝑡) 𝑑𝜔 (18)
∞

−∞
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Figure 10: The unusual shape of the relaxation function corresponding CDR, FCDR (t, 1.6).   FCDR (t<0, 1.6) =0; FCDR (t, 1.6) ~t0.6, 

t->+0, and decay after several damping oscillations.                   

Summary 

1) We consider phase transition in ferroelectric - weak relaxor - KTN15, KTN17 in the frame of pro-crystal model. Pro-crystal is 

ordinary ferroelectric, soft-mode excitation in which interacts with local modes, created by off-center Nb+5 ions. This TO-LM 

interaction leads to the creation static TO, Qs, and LM, Qφs, displacements, and coupled dynamic Qd, Qφd. Calculations were 

done in the simplest mean field approximation. 

2)  Therefore, two critical points at TL, TR, TL<Tc<TR appears instead of one. We observed early [3] resonance damping of the 

TA wave in KTN15 (frequency ~0.7 THz) and peak at the temperature dependence of the resonance transition oscillator force. 

Static displacement Qφs presence “allows” to understand (roughly) genesis of this peak. 

3) Qd – Qφd modes are repulsing in an agreement with the observed frequency gap in the soft-mode spectrum in KTN17 [3]. 

4) The rich structure of the observed TO spectrum leads to the preposition that the collective interactions between off-center Nb+5 

are essential. It is known that dielectric parameters are well described in many cases by the empirical Cole-Cole relaxation 

expression 𝜒𝐶𝐶 =
1

1+(exp (−
𝐼𝜋

2
)𝜔𝜏𝐶𝐶 )

𝛼  , 0 < 𝛼 < 1. We extended [3] Cole-Cole expression for the case α>1 and found that in this 

case susceptibility contains resonance (pole) in the complex   ω – plane. Here we applied for the analysis extended Cole-Cole 

expression general requirements of single-value and causality and found that the first available isolated complex dynamic 

resonance appears at 1<α<2. The observed [3] value is αexp ≈1.6±0.05. An effect of other “resolved” CDRs at α>3 is under 

discussion. 

5) We also calculated correlation functions corresponding Qd-Qd displacements for the case of harmonic resonance (SQdQd) and 

complex dynamic resonance, SQdQdeCCf, and found that the last spectrum contains   a sharp, strong central hole at ω=0 in contrast 

with SQdQd. It appears because Im (χeCCf )~ |𝜔|𝛼 ,  𝛼 ≈ 1.6 and dynamical complex resonance isn’t excited by the low-frequency 

thermal noise. 

6) It is necessary to note that relaxation function corresponding CDR, FCDR (t, α), has non usually shape: FCDR (t<0, 1.6)=0, but  

FCDR ( t, 1.6 )~t0.6 at t->+0 and decay after several damping oscillations. 
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