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Abstract 
 

       In this review we consider formula that determines the curvature dependent surface tension in a droplet with two phases. Taking 

into account the size dependence of the surface tension systems of nonlinear differential equations describing the droplet profile are 

obtained. We have shown if the droplet size is not so large compared to the thickness of the surface layer (micro- or nanodroplets) the 

dependence of the surface tension on the curvature is very important. 
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Introduction 
 

       The nonwetting liquid takes the form of a drop on a surface of a body. The well-known Young equation describes the balance at the three-

phase contact of solid-liquid and gas. The interfacial tensions form the equilibrium contact angle of wetting, many times referred to as Young 

contact angle, θ. Young suggested measuring contact angle θ of the liquid with the surface. The mechanical equilibrium of a droplet lying on a 

flat hard surface under the constraints of three surface tensions is called the Young equation. The surface tension (Young's equation) for large 

droplets is determined [1-10] (see figure 1) by  

 cos21   , (1a) 

 

where σ1 is tension at the interface of the solid and liquid phases, σ2 is tension at the interface of the solid and vapor phase, σ is tension 

at the interface of the liquid and vapor phases. The equilibrium contact angle reflects the relative strength of the liquid, solid, and 

vapours molecular interaction. 

 

The drop volume, V, is determined from angle θ from the formula [1-9]: 

 

31
~ ( )

3
sV r  

,  (1b) 

where rs is equilibrium radius of a drop, and 

 
2( ) ~ (1 cos ) (2 cos )    

. (1c) 
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Figure1: The dimensionless profiles of sessile microdrop. 

 

         Let us consider an isolated system in thermodynamic equilibrium, which consists of two bulk phases with different densities - 

steam and liquid and also the interface between them. 

 

       Here the surface tension acts as a separating surface with a minimum value [1-3]. Excess pressure is provided by the Laplace 

equation [4-10]: 

 

p
,  (2a) 

 

where  is the surface tension,   determines the mean curvature of the surface. Differential of excess pressure  

 

 ddpd  )(
.  (2b) 

 

To determine the surface tension, let us apply the Gibbs equation that can be written in the form of 

 

)( pddd  
,  (3) 

 

where  is the Gibbs adsorption, 


 is the chemical potential, 0  is a non-negative parameter characterizing the thickness of the 

interfacial layer. In surface thermodynamics the Tolman length is used as a parameter   which is equal to the distance between the 

surface of tension and equimolar surface. The numerical values of parameter   are in the range from 0.1 to 1 nm far from the critical 

boiling point. When writing the equation (3) we have taken into account that the differential for the chemical potential and the Gibbs 

adsorption are equal 
npdd  /)(

and n  , where n  is the substance concentrations difference in interfacial phases. 

Equation (3) holds for any smooth interfacial phase irrespective of its geometrical shape. In what follows we assume that   does not 

depend on the curvature radii. This assumption is considered acceptable if the curvature of the surface is not too large compared with 

1/δ [1,2]; an analysis of the size dependence of the surface tension for the spherical surface show that such assumption is already 

acceptable when  /1.0||  . Substituting (2) into (3) we can obtain the equation 









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
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1
.   (4) 

 

Having integrated (4) we can find 
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where
)(  is a flat surface tension as 0 . For arbitrarily curved surface 21 /1/1 rr 

, where 1r  and 2r  are the principal 

radii of curvature of the surface [9] therefore from (5) we finally obtain 














21

)(

11
1

rr





.   (6) 

 

As can be expected, when 21 rr   from (6) the well-known Tolman formula is derived for small spherical droplets [3].When 

|||| 21 rr   we have a formula for a long and thin-walled cylinder of radius 2r  [4]. We also note that the above arguments are in 

accordance with the provision that at sufficiently high 1r  and 2r  in the thermodynamic equations for the spherical surface curvature 

can be replaced by medium (Euler) curvature. 

 

In [9] a comparison of simple size dependency for spherical and cylindrical shaped surfaces resulted in the following interpolation 

formula 

 









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






 

21

)( 11
1

rr


.  (7) 

It is easy to verify that formula (7) can be derived using expansion of (5) into series of 


 in view of zero and consider first member 

only. 

 

Theoretical remarks for Rekhviashvili - Sokurov`s model 
 

       As the most important application of the above results from a practical point of view, let us consider the problem of the sessile 

droplet. The droplet is on the poorly wet table substrate for example on the graphite atomically smooth surface. 

 

 

Figure 2: The sessile drop profile corresponding to surface of tension. 

 

       The dotted line is the equimolar surface with the zero Gibbs adsorption ( 0 ). 

 

       We use the Bashforth-Adams approximation (see [6-9]) and according to this, the influence of the substrate is not taken into 

account. From the standpoint of thermodynamics, the droplet is macroscopic object. The solid-liquid interface is flat, so the size 

dependence of surface tension is not considered here. Origin is superimposed with droplet vertex which is on the surface of tension. 

The equilibrium droplet profile is determined in terms of the constancy of the sum of hydrostatic and capillary pressure. In this case 

the Laplace equation is 

 

zgp
rr

 







 0

21

11

,  (8) 
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ds

d

r




1

1

, 
xr

sin1

2



, ],0[  , 

where 0p
 is the pressure of the droplet measured at the top (

0,0  zx
), 


 is slope of the tangent at a point of the meridian, s is 

the arc length, x and z are the coordinates that define the droplet cross-section, 
nm

 is the difference in density between the 

liquid and gaseous phases, 
g

 is the gravitational acceleration, m is the mass of a single particle (atom or molecule). In this case the 

surface tension depends on the local curvature of radii 1r and 2r . Substituting (6) into (8) we obtain 
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cos
ds

dx

, 
sin

ds

dz

,   (10) 

 

 

0)0()0()0(  sszsx 
, (11) 

 

where r is the radius of curvature of the droplet vertices. When deriving equation (9) we took into account that because of the axial 

symmetry of the droplet on its top the following condition is hold [9]: 0

)(

21 /2 prrr  
. As 0  the surface tension dependence 

on the curvature is absent. In this case, it follows from (9) exactly the well-known Bashforth-Adams equation [9, 10]. The Bashforth-

Adams equation is reduced to various differential equations for the droplet profile or volume which are solvable numerically. 

 

       If we introduce the dimensionless (related to r) variables x and z, then (9) - (11) are reduced to the Cauchy problem for a system 

of two nonlinear differential equations 
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0 , 
0

, 
20  

, 

 

where r/  , 
)(2 /   rg
 and 

)21/(2  
 are dimensionless parameters that define the physical properties for 

the droplet. These equations contain only two independent parameters   and 


 which depends on the specific experimental 
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conditions: the parameter   determines the dependence of the surface tension on the surface curvature; the parameter 


 is linked to 

the capillary constant /2rc  . 

       Equations (12), (13) with the initial conditions (14) were solved numerically by the 4th order Runge-Kutta method with fixed step 

size. Graphs of the resulting solutions are shown in Figure 2a,b. For clarity in these figures the origin is shifted to the droplets bottom. 

The algorithm has been verified at 0  using the Bashforth-Adams table data which is partially presented in [9]. This way reveals 

that the coincidence of the solutions is ensured at four significant digits. Since error in experimental measurements within the sessile 

drop method is, as a rule, higher then 0.1% then the accuracy achieved can be considered satisfactory for the solution of the equations. 

 

       Figure 3a. shows that with the increase of the parameter   the droplet on the substrate surface becomes flatter. It may be due to a 

decrease in surface tension 
)(  and/or increase in the droplet density. Here the size effect of surface tension is not considered that 

corresponds to the parameter values: 0 , 
)(  and 2 .  

 

       But it follows from the above models under certain conditions the dependence of the surface tension of the radii of curvature 

affects the equilibrium shape of the droplet and it is shown in Figure 3b. With the increase of the parameter   the droplet flattened. 

This is due to a general decrease of surface tension and increase of the interface layer thickness. The change in the profile, in view of 

the above reasons, is not visible for larger drops. However, for micro- and nanosized droplets this could play a significant part at 

higher temperatures. It should be noted that the nanodroplets being a common modern nanotechnology objects are studied with 

transmission electron microscopy that provides high-resolution for studding the droplet shape. 

 

 

(a) 

(b) 

Figure 3 a, b: The dimensionless profiles of sessile drops at various values of the parameters   and 


 [9]. 

 

If the droplet profile is known, it is possible to calculate the droplets equilibrium volume. In general, it is equal to 
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

0

0

23

z

dzxrV 

,    (15) 

where 0z
 is the dimensionless meniscus height defined as a maximum value in the coordinate system. 

Our calculations showthat the sessile droplet volume can be well approximated by the following empirical formulas: 

 
3

0.45
~ exp( 2,5β α)
β 1

r
V 


, ( 16a) 

3 2

1

9 β
~
α 0,2β 0,2

r
V



 
. (16b) 

       For small values of the parameter (
1.0~

) the calculated error in the sessile droplet volume according to formula (16a) does 

not exceed 5%. Increase in 


 parameter leads to this error rapid decrease. Size effect of the surface tension can be neglected when 

0  and formula (16a) remains valid. We use formula (16b), if >1. 

 

Computational experiment for Rekhviashvili - Sokurov`s model 
 

       Let us discuss briefly the possible application of the system of equations (12), (13). To determine the surface tension by the sessile 

drop method taking into account the curvature dependence of surface tension we can use an independent assessment of the surface 

layer thickness and the radius of curvature at the droplet apex obtained for example by using transmission electron microscopy.  

 

We show the calculated nanodroplet models. 

 

 

 

Figure 4a: Model image of sessile nanodrop ( 2.0 ,
10

) [9]. 
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Figure 4b: Model image of sessile nanodrop at = 0:1, = 5 [10]. 

 

 

Figure 4c: Model of sessile nanodrop at = 0:1, = 5 [10]. 

 

       The thickness of the surface layer is taken as the maximum value of   [1]. Once the parameters   and r are determined the 

numerical solution of equations (12), (13) is required as well as its correlation with the sessile droplet profile to determine the 

parameter of


. 

 

       This method is easier to implement but, generally speaking, it requires mathematical foundation: by correlation of the droplet 

profile and numerical solution of equations (12), (13) two parameters of   and 


 are extricated by this or that method. 

 

       We will develop new algorithms, and also computing experiments. 

 

       Methods for detailed determining of the surface tension without considering size effects are studied in [5- 7, 10]. For the above 

approximation these techniques are quite constructive. 

 

       The next step in theoretical studies will be modification of the equations (12), (13) taking into account Van der Waals forces 

between the droplet and the substrate. 

 

The Long Nanocylinder 
 

       We consider a case of the application theory [8, 9], when nanoparticles has a long cylinder form. We used the cylindrical coordinate 

system for which the characteristic spin function [8, 9] is presented by the angle function q(r) about the cylinder axis z. 

 

The free energy in this model has the following form [8, 9]:  
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where (r) is the angle between the cylinder axis and the magnetization vector; r is the radial coordinate.  

 

       The model kinetic energy in (17) is a classical analog of the exchange energy in the Heisenberg model for the two-dimensional 

space at the continuum approximation [8] that in our case corresponds to the infinite cylinder model [8, 9]. Then the kinetic energy in 

(17) coincides in form with the kinetic energy of particle (in cylindrical coordinates). This fact is not casual as the model under 

consideration permits exact analytical solutions in the form of quasiparticles (nonlinear waves) which are called instantons (or 

skyrmions [8, 9]). Please note that in our case these quasi--particles are not dynamic particles but topological compositions. Therefore, 

in our case the virtual kinetic energy of the topological instanton is meant by the kinetic energy. 

 

We introduce a relative coordinate:  

ρ ,
c

r

R


 (18) 

 

where Rc is the drop equilibrium radius. 

 

       Then there is a condition of 0  1. The proposed continuum model of energy (17) actually appears a Heisenberg model in 

which the interacting spins have meaning of the energy states of the particles associated with the constant exchange interaction A (with 

the dimension for the exchange energy [J/m]). 

 

Using (17) it is simple to derive the Euler - Lagrange equation: 

 
 

       For simplicity it is sufficient to use only a particular solution of this equation describing the nucleation process under simple 

boundary conditions: 

 
The solution of problems (19), (20) has a simple form: 

 
that is convenient for further analysis.  

 

       Let us introduce the model surface energy in order to obtain the Euler - Lagrange equations for the scale - invariant theory as well: 

 

 
where a2 is the ratio of the anisotropy energy to the exchange interaction constant A. The parameter a2 is determined in [8, 9]: 

2 1,
B

a
A

 
  (23) 

 

with the determined anisotropy function (model as the Rapini modified potential (see [8, 9])) : 

 



 

 

9 | Material Science, Industrial and Chemical Engineering, Volume 2020, Issue 02 

 
 

Copyright: © 

2020 S A Baranov * 

 

Modeling of Nanodroplets and Nanocylinders 

2

2

sin θ
,

2ρ

aB

 (24) 

 

where B is the positive energy quantity whose dimension coincides with A. 

 

       For agreement with the previous solution we assume that in (22) at B = 0 there is no anisotropy, and at B > 0 it occurs. The 

solution of equation (22) is as follows:  

 
       Please note that solutions (21) and (25) analytically join, therefore the indices are later omitted. 

 

       Let us consider one general solution (25). The diagram of this solution is presented in Figures 1a, b.  

 

       It is easy to show that the function (r) at a = 1 and 0  1has no point of inflection. This point appears only at a > 1. This 

means that the surface layer in our model can exist only at a > 1. In this case some volume whose energy being the surface energy of 

the cylindrical particle can be chosen as a surface layer. For definiteness we suppose, for example, that the surface layer begins to 

manifest itself clearly from a value of a > 4. Thus, we suppose that if a = 1 there is no anisotropy in the system, and the Tolman length 

actually coincides with the drop sizes. If a >> 1, then in the proposed model the specific anisotropy is more than the exchange 

interaction, and in the drop there appears a parameter (the Tolman length) which characterizes the dimension of the interfacial region.  

 

 

Figure 5a: Diagrams of solution (25) at different values of parameter a (see [9]). 
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Figure 5b: Diagrams of solution (25) at different values of parameter a: 

1 - a=1; 

2 - a=10; 

3 - a=50; 

4 - a=100. (See [8])  

 

       The case a < 1 corresponds to the negative surface energy (in Figure 5a this case is presented for a = 0.5), and it is not considered 

in detail in this paper as it is associated with the condensed phase instability. 

 

       One can estimate the change in the free energy from the particle center to its surface. This allows the physical interpretation of the 

introduced parameters of the model and the comparison of them with traditional energy characteristics which are used to describe the 

nucleation process. 

 

       Let us initially consider the layer--by--layer change in this free energy of a cylindrical drop. Let us return to the formula for the 

energy which we used to derive the equation of motion. It is as follows: E(r) = T + U. Taking into account solution (9) we find that the 

kinetic energy is equal to the potential energy: T = U. This important result for the closed dynamic system is associated with the virial 

theorem for the finite motion, and in our case it is the test if this approach to the problem solution is correct. For the total full energy 

we have: 

 
 

       It follows from (26) that at a = 1 and r < 1 the equality E(r) = A is satisfied. In the case when В > 0 the cylinder surface energy 

tends to Aa2 ~ B, and this limit is sharper the higher is the quantity B. Thus, just this parameter B can be associate to the parameter of 

the specific thermodynamic surface energy which occurs in the thermodynamic theories (of Gibbs, Tolman, etc.) on the understanding 

that the dimension of these energies is different. 

 

 

Figure 6a: Dependence of energy on parameters а and ρ (see [9]). 
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Figure 6b: Dependence of energy on parameters а and ρ (see [8]). 

 

 

       A sharp rise in free energy (see Figures 6 a,b) depending on the parameter a is identified with the phase transition which takes 

place in the system in the case of infinitely small anisotropy (see for detail in [8, 9]). In order to determine the total energy of the 

particle assigned to the cylinder length unit an integral of E(r) over the cylinder volume must be taken. Let us begin with a qualitative 

analysis of the model. Please note that for a particular case of a = 1 and В = 0 this integral must be equal to A (with an accuracy to the 

multiplier). Then there is no other energy in the system; here A is the only internal model energy of the system. In another limiting 

case some high value of a is sufficient for the total energy to tend to the anisotropy energy B. In the general case the total full specific 

energy (for the cylinder length unit) will be as follows: 

 

 
In the Cahn--Hillard theory [9, 11] the activation barrier energy is in proportion to the geometric mean of two energy parameters: 

BAEc ~
. (27a) 

 

       Unlike the proposed theory the Cahn--Hillard theory is not scale--invariant, and the quantity B has a dimension of J/m3. In our 

case the integral formula derived from (11) for the activation energy has the same form, i. e., one may talk of the coincidence of these 

theories when calculating the mean activation energy (in the volume unit). Thus, we can deduce that the proposed theory coincide 

qualitatevely with the Cahn - Hillard theory. In frame Cahn - Hillard theory we obtain same analytic structures too [11]: 

 

   0tgθ ρ / 2 exp ρ ρ / .ccr      (28) 

 
(A)                                                (B)

Figure 7: Schematics representations of the solution (25): (A), and (28): B) in the form of a domain wall of energy vectors. 
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The nanocylinder 2. 

       The previously introduced parameter 
2a  (see (23)) can formally be less than a = 1 (in Figure 5a, this case is presented for a = 

0.5). This case can correspond to negative anisotropy energy, which can, for example, prevent the creation of a nanoparticle. 

Technologically, it is possible to initiate the creation of a nanoparticle, but limit the growth a nanoparticle. 

Therefore, it is of interest to consider the case when: 

 

AB  ,  (29) 

 

Such a physical situation can take place in the case when a nanoparticle nucleus with a size 
10 

 (for definiteness
1,00 

) has 

already been created, but its development to an equilibrium state with
1

 is hindered by the created (artificially) anisotropy: 

 

2

2sin



aA

 . (30) 

 

We believe that this anisotropy manifests itself only starting from some sizes corresponding to the value 

 

1,00 
 (31) 

 

Then, for this case, the equation is linearized and greatly simplified: 
1 0    

.  (32) 

 

A particular solution for equation (32) can have the form (in our case, we use condition (32) to compare it with the solution in the 

form of formula (25)): 

 

0ln( )c    
, (33) 

where  

0/ (2ln(1 ))c  
 , (for 

.0 
). 

Function graph 
 0lnc  

 shown in Figure 8. 

 

Figure 8: Functions graphs of the solution (33). 

 

Analytical remark 
 

       We can obtain from formulas (10), (12), (13) the asymptotic dependence 
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 
1

tan ~ ,
ρr



 (34) 

where 

r
ρ ~

r

z
r

x  (see Figure 2). Radius rz is analog r1 and rx is analog r2 

On the other hand, we got the formula (see (21)): 

 

θ 1
tan .

2 ρ

 
 

   (35) 

 

We can obtain in classical theory (see Figure 1) 

θ
tan .

2 R

H 
 

   (36) 

 

These formulas have the same analytic structures. 

In frame Cahn--Hillard theory we obtain same analytic structures (form (28)) too [11]: 

 

Conclusions  
 

a) With the decrease of the condensed phase in size the proportion of surface atoms increases thus increasing the influence of the 

interphase boundaries. At the same time the size dependence of surface tension is determined by the Tolman length i.e. the actual 

thickness of the interfacial (transition) layer. 

 

b) In the present work a formula for the surface tension dependence on the principal radii of curvature on an arbitrary surface 

(equation (6)) is correctly deduced. It is shown that curvature dependence of surface tension leads to a noticeable change in the 

equilibrium profile of sessile droplets on a flat non-wetting substrate. Note that the consequence resulted from the dependence of 

the surface tension on the surface curvature can be attributed to the capillary effect of the second kind [8-10]. 

 

c) At the end of the work there have been obtained the results associated with the van der Waals gradient theory which can be 

resumed in the following way. If in the formation of a nanoparticle there is only one energy form which plays the role of the 

exchange interaction A then the additive separation of the system energy into the surface energy and the nanoparticle volume 

energy in the context of the proposed model is incorrect. However, in this case one can introduce the average energy of the whole 

nanoparticle and, from simple geometric considerations, derive the Rusanov linear formula for the surface energy. Commonly, the 

Rusanov formula is assumed universally applicable. This fact is not confirmed when our model of the anisotropy energy is 

complicated. 

 

d) The concept of the anisotropy energy, introduced into the theory in the form of the proposed model as the Rapini modified 

potential, leads to the appearance of the surface energy. Please note that in the conventional Rapini potential there is no multiplier 

of the form 1/r2 [30]. The anisotropy energy can have the meaning of the double electric layer energy (in electrochemistry), 

besides, at the formation of very small equilibrium particles with the differentiated surface energy it should be increased the 

electric capacity of the nanosystem where this nanoparticle is formed. So, one can suppose that the nano--nucleation process can 

be efficiently controlled. 

 

e) The main findings that unite all the parts of the work are the dependences of the surface energy on the thermodynamic parameters 

of the system which make it possible to expand in some ways the vision of the capillary phenomena in nanosystems. 
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