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Abstract 
 

      Huge amounts of antibiotics are currently being used in both 

human and veterinary medicine. Moreover, most are recalcitrant to 

biodegradation and can persist in the environment. In fact these 

compounds have been increasingly found as micro-contaminants in 

natural ecosystems and cause particular concern because of the 

development of multi-resistant bacteria, posing serious risks for 

human and animal health. In particular, the antibiotics used in 

livestock farms can persist in manure, causing environmental 

contamination if used as a biofertilizer. However, farm manure 

can also be a feed for biogas reactors and the digested effluent 

(digestate) used as fertilizer or soil improver. The fact that the 

latter can still contain antibiotic residues and possibly antibiotic 

resistance genes still remains to be clarified. 
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Introduction 
 

      Italy is the second country in Europe for the number of 

anaerobic digestion plants (Statistical report 2018 of European 

Biogas Association). Although they were initially set up with 

the main purpose of solving the issue of farm waste disposal, 

the production of electricity (by on-site combustion of biogas) 

now constitutes another source of income for agricultural firms, 

like milk and meat production. It is well known that it is 

common in cattle farms to use antibiotics for treating animal 

diseases [1]. However, residues of antibiotics and antibiotic 

resistance genes (ARGs) are nowadays considered environmentally 

emerging contaminants [2-4] posing a risk of spreading of 

antibiotic resistance among natural, human and animal microbial 

populations. Moreover, antibiotics themselves can also affect 

some sensitive natural microbial populations with possible 

consequences for some key ecosystem functions [5]. 

 

      The overuse of antibiotics to counteract animal diseases and 

in arable farming, such as the utilization of manure and bio 

solids as fertilizers [6,7] and the use of reclaimed water, have 

been significantly contributing to the environmental contamination 

from antibiotics and to the selection of antibiotic resistance 

genes [8-10]. The selection and transmission of ARGs, which 

give resistance bacteria (ARB) the ability to overcome the 

effects of antibiotics, is a phenomenon well known in hospitals 

[11], where antibiotic resistant pathogenic bacteria can persist 

and infect patients in the nosocomial environment in different 

ways [12]. Consequently, an increasing number of infections 

are becoming harder to treat owing to antibiotic ineffectiveness 

[13-16]. The origin of antibiotic resistance genes in microorganisms 

is older than the antibiotic era [17, 18], because ARGs are 

commonly found in natural bacteria [9]. However, the scientific 
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community is now aware that the spreading of ARB and ARGs 

is a complex phenomenon, involving both the indoor 

environments where antibiotics are used and soil and water 

ecosystems, where they are present as micro-contaminants [19,20], 

in line with the One Health approach, which recognizes that 

human health is connected to that of animals and the 

environment. The holistic One Health concept is ancient and 

up-to-date at the same time and is based on the recognition that 

human, animal and ecosystem health are inextricably linked. 

This model has been recognized by several Ministries of Health 

and Environment worldwide, the European Commission and 

the World Health Organization [21-23]. 

 

      In antibiotic treated animals, gut bacteria can act as ARG 

reservoirs [24], potentially transferring genetic material to soil 

and water environmental microorganisms and from the latter 

directly or indirectly to humans, for example through the 

consumption of fresh vegetables (Fig. 1) [25-28]. The European 

Commission has recently promoted the European Green Deal 

[29], a series of actions aimed at boosting the efficient use of 

resources, with a view to achieving a clean, circular economy 

and restoring biodiversity and reducing pollution. Among the 

various actions, the so called « Farm to Fork » one [30] 

recognizes the link between humans and ecosystems, where the 

One Health concept is reiterated. Antimicrobial resistance due 

to the massive use of antibiotics worldwide has led to thousands 

of human deaths and considerable healthcare costs. The 

Commission aims to reduce the overall use of antibiotics for 

farmed animals by 50% by 2030. 

 

 
 

Figure 1. Farming practices and the potential path for the spreading of ARB and ARGs. Can Anaerobic Digestion influence 

(decrease/increase) ARB and ARGs in the digestate used as a good quality and environmentally friendly fertilizer? 

 

      Moreover, the spread of ARGs through microbial communities 

can also be favored by other chemicals [31]. The coexistence of 

antibiotic-producing and non-producing bacterial strains has led 

to the co-evolution of resistance mechanisms in environments 

where antibiotics are not present, due to the co-selection of 

ARGs with other genes conferring, for example, resistance to 

heavy metals or other pollutants such as polycyclic aromatic 

hydrocarbons [32, 33]. This is due to the fact that ARGs are 

commonly located on genetic cassettes associated with several 

genes and linked to integrases, placed on plasmids. ARGs can 

be transferred between different bacterial species due to their 

association with integrons and mobile genetic elements 

(MGEs), such as transposons and plasmids [34, 35]. 

 

      In particular, ARGs can be transferred by one microorganism to 

another by vertical gene transfer (VGT) inside the same bacterial 

species, and by horizontal gene transfer (HGT) between different 

species through MGEs [36]. Once in the soil, intestinal bacteria mix 

with soil ones carrying genetic material useful for evolutionary 

adaptation [37]. Several studies have investigated if residual 
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antibiotics and ARGs from cattle manure can alter the natural 

environmental resistome, showing a general increase in ARG 

abundances [38]. For example, different classes of antimicrobials 

have been detected in cattle manure, in particular fluoroquinolones, 

sulfonamides and tetracyclines in US beef cattle manure [39]. In a 

comprehensive study, Zhao et al. found seven fluoroquinolones, 

eight sulfonamides, and four tetracyclines in manure from large- 

scale animal feedlots in China [40]. Overall, fluoroquinolones and 

tetracyclines were detected more frequently and at higher 

concentrations than sulfonamides (oxytetracycline, 1.24 mg/kg; 

enrofloxacin, 6.79 mg/kg; ciprofloxacin, 3.44 mg/kg; sulfamethoxazole, 

not detected). In a similar way, the number of genes associated with 

resistance to these antibiotics and found in manure and in soil 

amended with it was considerable [28]. 

 

Anaerobic Digestion 
 

      An alternative to the direct application of manure on 

agricultural land is its use as feed for anaerobic digesters, in 

order to obtain biogas to produce electricity, heat or fuel [41, 

42]. Anaerobic digestion (AD) is a spontaneous process, 

widespread in environments rich in organic matter but depleted 

of oxygen and other electron acceptors such as nitrate, sulfate, 

iron or oxidized manganese [43]. These ecosystems include 

shallow freshwaters such as swamps, rice fields and submerged 

soils, but also human and animal intestinal tracts (large 

ruminant and non-ruminant herbivores, as well as termites and 

woodworms). Anthropogenic and engineered environments, 

such as landfills and anaerobic digesters, are also included [44]. 

The AD technology is spreading rapidly [45] due to the 

numerous advantages it offers. In addition to the well-known 

possibility of connecting waste disposal with sustainable energy 

production and using the digestate as a fertilizer [46], other 

benefits for society and the environment are the increase in 

nutrient recovery and the reduction of greenhouse emissions 

[47]. Moreover, from a technological point of view, AD has 

been developed as a low- cost organic waste treatment technology 

with a simple setup and relatively limited investment and 

operating costs [48]. All these reasons currently place the 

anaerobic digestion process and biogas in a hub position in the 

development of the circular economy, especially in the 

biomethane production perspective. 

 

      The AD process consists of a sequence of anaerobic 

biochemical reactions mediated by populations of microorganisms 

that, cooperating sequentially [49], convert complex organic 

molecules, such as polysaccharides, lipids, and proteins, into 

simple substances, mainly CH4 (50-75%) and CO2 (25-45%). 

During AD small quantities of other gases are also produced, 

such as H2O, H2, CO, N2, NH3, O2, and H2S, whose overall 

fraction is approximately 5% of the biogas produced [50,51]. 

 

      The AD process includes four main metabolic steps: (i) 

hydrolysis, (ii) acidogenesis and (iii) acetogenesis, which are 

performed by Bacteria and (iv) methanogenesis, the last step, 

carried out by the methanogenic Archaea. 

 

      Since an unbalanced composition of the microbial community 

affects biogas production efficiency, microbial ecology studies are 

fundamental for successful AD. In the last decade, many works 

have been focusing on understanding the structure and dynamics of 

the archaeal and bacterial communities during the AD process. 

[6,46,48]. For example, some authors showed that due to their 

bacteriostatic and/or biocide effects, antibiotics can affect AD 

performance and reduce biogas production, primarily by 

selectively influencing microbial components and thus 

changing the general structure of the microbial community [52]. 

Key populations of acetogenic bacteria, capable of converting 

volatile acids such as propionate and butyrate into acetate 

(which in turn can be directly used by acetoclastic archaea to 

produce methane) are reported to be sensitive to the detrimental 

actions of antibiotics [53]. Other authors reported that 

antibiotics such as sulfamethoxazole can trigger significant 

changes in methanogen composition, by driving it towards a 

predominance of the acetotrophic or hydrogenotrophic metabolic 

pathway in the production of methane [54, 55]. The 

consequences in terms of overall AD efficiency are still unclear. 

 

      To date, few studies have been conducted on the interaction 

between antibiotics and sulfate-reducing bacteria (SRB), 

developing H2S during AD. A microbial compositional analysis 

revealed that anaerobic reactors receiving antibiotic-bearing 

(mainly streptomycin) wastewater were dominated by 

Deltaproteobacteria (51%) affiliated mainly with sulfate-

reducing bacteria (SRB) [56]. The latter can have a detrimental 

effect on biogas production because they can compete with 

Archaea [57] and because H2S can be toxic for other anaerobes. 

 

      Although these studies showed that the presence of 

antibiotics can affect AD performance, the possible removal of 

antibiotic residues during the AD process has not been 

sufficiently investigated so far, especially in cattle manure fed 

anaerobic digesters [58, 59]. Some studies reported that 

degradation of various antibiotics during AD can occur; in fact, 

a complete removal of ampicillin, florfenicol, sulfadimethoxine, 

sulfamerazine, sulfamethoxazole, sulfamethoxydiazine, 

tetracycline, trimethoprim, and tylosin was observed [60-62]. 

 

      However, these works focused more on the effects of 

antibiotics on the AD process than on the removal of antibiotics 

by the microbial community. It has been hypothesized that 

antibiotics can act as a selective pressure on some microbial 

components, which can develop resistance. In some cases, 

microorganisms can resist the toxic effects of antibiotics; in 

others they can show the capability to degrade and remove them 

as a homeostatic response to stress. [5]. This hypothesis is 

supported by the fact that there is also substantial evidence that 

antibiotic compounds (at some concentrations) do not completely 

affect AD process stability as measured by biogas production 

and composition, pH, volatile fatty acids (VFAs) concentrations, 

soluble organic content in the AD process, volatile solids 

removal or nitrogen content [28,63,64]. In any case, the effects 

of antibiotics on the AD microbial community depend on several 

parameters, and, primarily, their concentration [65]. 

 

      Another aspect to be still clarified is if the AD process can 

influence the fate of ARGs; some studies report that anaerobic 

digestion can reduce tet genes (tetracycline resistance genes), 

[63] and others that AD can promote an increase in sul genes at 

the end of the process. [28, 64]. Further studies are therefore 
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necessary to investigate more thoroughly the possible interactions 

between antibiotic residues, the AD process and ARGs. 

 

Sulfonamides and Fluoroquinolones 
 

      Among the different classes of antibiotics used for cattle, 

there are sulfonamides and fluoroquinolones. Sulfonamides are 

one of the oldest classes of drugs used systemically. Gerhard 

Domagk, a Nobel Prize winner in 1939, first discovered their 

anti-bacterial properties; he observed that prontosil, a sulfonamide 

dye, was able to restrain selectively infectious bacteria cells. 

Prontosil is a pro-drug, which is transformed by the human 

body to sulfanilamide, the anti-bacterial active agent. This 

finding led to the discovery of other anti-bacterial compounds 

derived from this chemical group, with the same main core, but 

different bioactivities [66]. Currently, sulfamethoxazole (SMX) 

is one of the antibiotics most commonly prescribed and 

consumed in both human and veterinary medicine. In particular, 

SMX can be used in combination with the antibiotic Trimethoprim 

to treat and prevent respiratory infections and mastitis in cattle. 

SMX is a sulfonamide compound with aniline and an isoxazole 

group. Its action is bacteriostatic; it is able to inhibit the 

synthesis of folic acid, necessary for the synthesis of nucleotides, in 

bacterial cells (Fig. 2a). Many bacteria are able to convert para-

aminobenzoic acid to folic acid. Since sulfonamides are very 

similar in structure to para-amino benzoic acid, they can act as 

competitive inhibitors of it, by interrupting its role in the 

synthesis of folic acid and ultimately, of purine and DNA [67]. 

Once administered, SMX is not completely metabolized: 

approximately 43% is transformed to N4-acetyl-

sulfamethoxazole, 9-15% to sulfamethoxazole N1- glucuronide 

and 15-25% is excreted unchanged [68, 69]. Some authors 

found SMX degradation from 50% to 80% in biologically 

active soils in about 20 days, under respectively aerobic and 

anaerobic conditions [70, 71]. Although this antibiotic can be 

biodegraded [7], a reduction in soil bacterial diversity and 

increase in the number of ARB is expected in agricultural soils. 

Finally, another issue to be investigated is the possible 

accumulation of SMX into fresh edible vegetables [72, 73] 

which can be a source of ARB and ARG for humans. 

 

      Resistance to sulfonamides, clinically present in gram-

negative enteric bacteria, is transmitted by plasmids and 

influenced by genes that encode alternative variants of drug-

resistant DHPS enzymes. Dihydropteroate synthase (DHPS) 

catalyzes the reaction of 6-hydroxymethyl-dihydropterin 1′-

diphosphate with 4-aminobenzoate producing dihydropteroate 

and inorganic pyrophosphate [74]. Sulfonamides act as 

competitive inhibitors of DHPS. Enzymes encoded by 

resistance-plasmids correspond to two genes, sul1 and sul2. The 

sul1 gene is usually found linked to other resistance genes in 

the Tn21 type integron, while sul2 is usually found on small 

plasmids of the IncQ family (RSF1010) and of the pBP1 one. 

DHPS products of both sul1 and sul2 show low Km values (0.6 

μM) for para-aminobenzoic acid (PABA), resulting in 

resistance to high concentrations of sulfonamide (Fig. 3a). In 

particular, sul2's DHPS appears to show a very acute specificity 

in distinguishing between its normal PABA substrate and 

sulfonamide. Moreover, a third resistance gene, sul3, has been 

characterized by Perreten and Boerlin [75], coding for a 263-

amino-acid protein similar to a dihydropteroate synthase 

encoded by the 54-kb conjugative plasmid pVP440 from 

Escherichia coli. 

 

      Quinolones are one of the most frequently prescribed types 

of antimicrobials in the world and are used to treat various 

human bacterial infections [76]. Due to their widespread use 

and overuse, the number of quinolone-resistant bacterial strains 

has steadily increased since the 1990s [77]. As well as other 

antimicrobials, the increase in quinolone resistance threatens 

the clinical applicability of this class of drugs. Quinolones are 

able to convert their targets, gyrase and topoisomerase IV, into 

toxic enzymes that fragment bacterial chromosomes [78] (Fig. 

2b). Norfloxacin, the first broad-spectrum quinolone, was 

restricted to use in the treatment of urinary tract infections and 

sexually transmitted diseases. Currently, fluoroquinolones 

(FQs), fully synthetic and broad-spectrum antibiotics, are the 

most frequently used in animal husbandry [79]. They derive 

from quinolones by modifying their structure with a fluorine 

 

 
(a) 

 

 
(b) 

(a)  
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Figure 2: Mechanism of action in bacterial cells of (a) 

sulfonamides, such as sulfamethoxazole and (b) 

fluoroquinolones such as ciprofloxacin and enrofloxacin. 

 

      Ciprofloxacin (CIP) was the first fluoroquinolone that 

displayed significant activity not only in the urinary tract [80]. 

For more than 20 years, ciprofloxacin has continued to be one 

of the most commonly prescribed antibacterial drugs and used 

to treat a variety of Gram-negative and to a lesser extent, Gram- 

positive infections. The clinical success of ciprofloxacin 

spawned an array of newer-generation quinolones that displayed an 

even broader spectrum of activity, especially against Gram-

positive species [80]. A consequence of its massive use is the 

inclusion of CIP in the Watch List by EU (2018) [81]. 

 

      Enrofloxacin (ENR) is another broad-spectrum antibiotic 

related to the class of fluoroquinolones [82]. It has been widely 

used in many countries for the treatment of a variety of poultry 

diseases, mainly those associated with Escherichia coli and 

Pasteurella multocida, but also avian mycoplasmosis. In the 

United States, the usage of enrofloxacin in poultry was banned 

in 2005. However, FQ-resistant strains are still found [83]. 

Enrofloxacin and ciprofloxacin are closely related, since the 

latter is the main metabolite of ENR [84]. Even if CIP is not 

directly applied to livestock, metabolization of ENR could end 

in the occurrence of CIP in veterinary field. Both ENR and CIP 

are adsorbed to soil and their biodegradation rates are quite low, 

consequently significant concentrations of FQ are found in 

agricultural soil [40, 85]. FQ persistence in soil depends on both 

abiotic (e.g. light, soil organic matter) and biotic factors 

(bacterial populations able to degrade them) [86]. On the other 

hand, strong adsorption lead to less uptake of FQs residues by 

plants [87]. Once in the soil, the fate of this class of antibiotics 

in the ecosystem food web (including human one) is still to be 

clarified [88]. 

 

      Several resistance mechanisms induced by quinolones in 

bacteria cells are reported [89] such as those related to a 

chromosomal mutation in genes encoding for topoisomerase IV 

or gyrase IV, or to a decrease in drug accumulation (Fig. 3). 

The latter can happen if bacterial efflux pumps are 

overexpressed (and the drug is pumped outside the cell), or 

when porin proteins are down-regulated, avoiding the passive 

diffusion of ciprofloxacin inside the cell. Moreover, so-called 

plasmid-mediated quinolone resistance has been recognized. It 

acts in different ways: the first plasmid-mediated resistance 

discovered was the qnr gene, encoding for a pentapeptide 

capable of binding chromosomal DNA and protecting it from 

drug action. Another plasmid-mediated resistance mechanism 

is the cr variant of the aac(6’)-lb gene, which encodes for an 

aminoglycoside acetyltransferase that acetylates ciprofloxacin[90]. 

 

 
 

Figure 3. Resistance mechanisms for sulfonamides (A) and fluoroquinolones (B). 

 

The AZeRO Antibiotics Project 
 

       Within this context, the project titled “Evaluation of the 

presence of Antibiotics in Zootechnical waste and in the 

digestate of biogas plants: study of strategies for their RemOval 

- AZeRO antibiotics” is a research project funded by Lazio 

Innova (Lazio Regional Development Agency) in line with 

environmental sustainability, the green economy and the 

protection of human health and ecosystems. It is an 

interdisciplinary project where the microbial ecology, soil and 

ruminal ecosystems, environmental and fermentation chemistry 

and molecular biology interact in order to investigate the AD 

process and how antibiotics can affect it. Moreover, the 

environmental fate of antibiotics and ARGs is also studied. 

 

In particular, the project aims at: 
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 evaluating the presence and concentration of SMX, CIP 

and ENR antibiotics in zootechnical waste and in the 

digestate of full-scale biogas digesters in the Lazio region, 

(Central Italy); 

 assessing how SMX, CIP and ENR occurrence can 

influence the anaerobic digestion process; 

 assessing which factors and conditions can favor antibiotic 

degradation in anaerobic conditions; 

 Identifying ecological solutions and "best practices" for 

preventing or reducing the environmental spreading of 

residual antibiotics and ARGs by agricultural activities. 

 Evaluating if the AD process is able to decrease the 

antibiotics and ARGs which enter biogas digesters with 

manure. The latter aspect is particularly important because 

it could make digestate more suitable for replacing 

chemical fertilizers and meet the European Green Deal 

target “From Farm to Fork” [30]. 

 

       The two-year project will involve several biogas plants 

located in cattle farms in central Italy, where milk, meat and 

cheeses, including numerous PDO (Protected Designation of 

Origin) and PGI (Protected Geographical Indication), are 

produced. Both the reactor feeds (mainly cattle manure) and 

digestates will be sampled in those farms monthly, over 2 year 

to evaluate the residual concentrations of antibiotics and the 

resistance genes. 
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